
An Object-Based Approach to Medical Process
Automation

Dipayan Gangopadhyay, Ph.D. and Peter Y.F. Wu, Ph.D.
* IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598
e-mail: dipayanOwatson.ibm.com, pwu@watson.ibm.com

The medical events of providers rendering services
for patient care are necessarily interrelated. A
clinical information system must reliably record
these events and relate the information about their
inter-dependency. The quality of clinical inform-
ation therefore depends crucially on the proper co-
ordination and tracking of these events according
to established protocols. We introduce an object-
based approach to define medical processes for their
automation. For each medical process, we capture
in one logical unit, an event-driven mechanism to
coordinate of inter-dependent medical events of the
process, and the data relevant to the process. We
call the encapsulated unit a form object. Moreover,
the form object may contain sub-objects each of
which also encapsulates its own protocol knowledge
and relevant information. In contrast to other ap-
proaches, the form object facilitates for adminis-
tering medical processes due to its locality of defi-
nition, and its event-driven paradigm reflects med-
ical events more naturally.

1. INTRODUCTION

Consider the process of ordering medication for a
patient. An advising nurse may initiate the or-
der, but it requires the doctor's approval before
the pharmacy can fill the prescription. When the
pharmacy fills the prescription, the action must
also result in a record for the drugs dispensed,
and the completion of the medication order en-
tered into the patient's medical record. In short,
medical processes involve multiple parties generat-
ing asynchronous events over time (such as "doc-
tor has approved" and "prescription filled"). Most
importantly, the results must be recorded reliably

in the patients' medical records. A clinical inform-
ation system (CIS) should coordinate and track
these concurrent events generated by these spa-
tially distributed parties. In fact, accurate, reli-
able and timely execution of medical processes is
essential to the overall accuracy of the patients'
medical records.

Moreover, different health care organizations may
have different needs and specific requirements ac-
cording to their policies and regulatory mandates.
Their protocols for medical processes may have
to be somewhat diferent. Even within the same
organization, protocols may need to change over
time. For example, using results from time and
motion studies, an organization may modify the
protocols to improve efficiency and robustness. To
adapt to organizational differences and to accom-
modate changes in protocols, the CIS must sup-
port an architecture which drives the execution of
the medical processes from definition, rather than
hard-coding the automated protocols in the con-
stituent software programs. This calls for a new
level of flexibility in the structure of the system,
which separates the definition of protocols from
the automated execution of the processes accord-
ing to their defined protocols.

We present an object-based approach to automate
medical processes. In our approach, we capture in
one unit, the coordination of medical events and
the related data together. Such a unit is an ob-
ject in the system, which we call a form object.
We gather data as attributes in the form object,
and we specify its behavior in a finite state ma-
chine, an event-driven mechanism to coordinate
the events in the medical process. Furthermore,

0195-4210/92/$5.00 © 1994 AMIA, Inc. 507

a form object, in turn, can contain other sub-
objects, each of which also encapsulates its own
protocol knowledge and relevant data items, as
well as its sub-objects. The reader may refer to [1l
for a more complete description of the object mod-
eling method and notations.

Our approach defines as one encapsulated unit,
all relevant information items and protocol knowl-
edge for a medical process. Such locality of defi-
nition serves as the key to manage and facilitate
changes in the protocols. More, the hierarchical
decomposition of objects into sub-objects (instead
of process decomposition) is our means to manage
complexity, without loss to the locality of defin-
ition. Such decomposition enables our approach
to scale up to complex medical protocols without
making the finite state machine of any object too
large and cumbersome. Besides, since the form
objects encapsulate protocol knowledge along with
related data, and we can specify them precisely, we
can drive the execution of medical processes from
their definition. Therefore, we can easily mod-
ify the definition of a form object to change the
protocol, consequently resulting in changes in the
execution of the medical process. The separation
of definition from execution enables us to add new
protocols and change existing ones without mak-
ing an impact on the run-time system. Limited
by space, this paper will concentrate on medical
process definition and will not discuss further on
the execution environment.

We currently have a prototype system running
on a Unix workstation with X-windows and Mo-
tif. The prototype system is a definition tool to
visually create the form objects with interactive
graphics, and a simulated execution environment
to verify the processes defined the form objects.
The reader may refer to [2] for more information
about the system.

Some earlier studies concentrated on protect-
ing data integrity in clinical information sys-
tems [3,4,5]; there was also use of finite state ma-
chine to capture process knowledge [6]. Our ap-
proach distinguishes from others in its definition
paradigm for medical processes: our approach pro-
vides locality of definition via encapsulation of rel-
evant data and event-driven ordering of process
steps in objects, and we support hierarchical de-

composition of these objects to manage complex-
ity. What is germane here is not the use of finite
state machines, but the encapsulation of process
and data as objects and management of complex-
ity by hierarchical decomposition of objects. NVe
believe that our approach facilitates management
and modification of protocols much easier than the
traditional process decomposition approach where
data and processes are not localized.

Section 2 will present our object-based approach
to modeling the medical process. Section 3 gets
into further details of medical process definition.
We explain th attributes and the sub-objects in
the data part of a form object, and the state dia-
gram of a finite state machine which captures the
medical process as the life-cycle of the data rele-
vant to the process. Our explanation will take a
running example of ordering new medication for
illustration. Section 4 will discuss the advantages
of our approach in comparison to some other ap-
proaches.

2. THE OBJECT-BASED APPROACH

We model the medical process in an object-based
approach. In the CIS context, a medical process
comprises a collection of information items, such
as forms, and a coordinated sequence of opera-
tions by agents, such as health care providers, on
the collected information. The central idea of our
approach is to encapsulate data and the coordina-
tion of processing operations in an object, which
we call the form object. Moreover, the form ob-
ject may also contain sub-objects, each of which, in
turn, encapsulates its own data items and process
knowledge, as well as its own sub-objects. The hi-
erarchical decomposition can therefore hide com-
plexities at the appropriate levels of abstraction.
Basically, the form object which models the med-
ical process consists of two parts: data and behav-
ior. The data part consists of the attributes of the
form object, and the sub-objects it may contain.
The behavior part is a finite state machine which
specifies how the form object should respond to
events which may happen. Under our model, the
form object interacts with various agent objects in
the CIS, as the medical process proceeds.

Consider the example of ordering new medication

508

for a patient. Let us call the process NewMedica-
tion. The NewMedication form object consists of,
in the data type part, a sub-object Prescription
and attributes about an Agent, the health care
provider who initiates the NewMedication process,
and the name of a doctor whose approval is re-
quired. In the behavior part, the NewMedication
form object consists of a finite state machine to ex-
ecute the NewMedication process. When a health
care provider issues a new medication, he/she cre-
ates an instance of the NewMedication form ob-
ject, filling in all the necessary information to ini-
tiate the process. The form object follows its be-
havior description in the state diagram to interact
with other agent objects, as the NewMedication
process proceeds. The state diagram is, in fact,
the life-cycle of the data items in the process. Fig-
ure 1 depicts the form object interacting with an-
other agent object in the execution of the medical
process.

Figure 1. A form object interacting with anothr object

3. MEDICAL PROCESS DEFINITION

The form object defines the medical process. The
form object declares the information items needed
for processing, and describes the sequencing con-
trol to process the information. In our model, the
behavior description is a state diagram of the finite
state machine to execute the process, depicting the
life-cycle of the data in the process. In this sec-
tion, we will further explain the form object. The
description here is an adaptation of the ObjChart
notations [1,21 for concurrent objects and their be-
havior. Figure 2 illustrates a sample NewMedica-
tion form object.

The form object has two parts: data and be-
havior. The data part contains a prescription
sub-object, and the attribute information concern-

ing the agent who initiated the NewMedication
process, and the doctor whose signature is needed
to fill the prescription. The behavior part is a fi-
nite state machine, depicted by the state diagram,
which specifies the protocol the NewMedication
process must go through. Each process may have
to go through certain number of states from start
to finish. We call the initial state the start state,
and the states at which the process will terminate
the accept states. In our state diagram, ovals
represent the states. We mark the accept states
in double ovals, and we label each state of the
process inside the ovals.

NWM tcaom obj

Figure 2. NwMedicatom form objec

From one state to another, the process goes
through a state transition. Arcs connecting one

oval to another represent the state transitions.
Events trigger state transitions, when certain
specified conditions are met. When state tran-
sition takes place, a list of associated actions will
fire asynchronously. These actions usually involve
interaction with other objects in the CIS to carry
out the processing steps, which sometimes may
results in other events. In the state diagram, we

509

DATA
ala, iI z p fhoRN.) I

-.-__0d.ftt) erg

I

I

label each arc in the form

Event[Conditions]
Actions

In the following, we will explain Event, Condi-
tions and Actions, taking the NewMedication
form object as an example.

3.1 Event
At any state (except the accept states), the fi-
nite state machine is waiting for some events which
may trigger a state transition. An event usually
signifies the receipt of a message. Our example
illustrates two kinds of events:

1. onEntry(S): This event happens whenever
the state machine enters state S;

2. done(Service(Args)): This event happens
when an agent sends a message to this form
object to notify completion of service re-
quested.

3.2 Conditions
A condition is a boolean expression of simple rela-
tional comparisons or query predicates. A simple
relational comparison has the form such as X < Y,
where X and Y are variables instantiated in the
return arguments of the associated event, or lit-
eral constants. A query predicate has the form
obj.prop(Args) where obj refers to some object
contained in the data part of the form object, so
that we can synchronously evaluate the expres-
sion. The expression obj.prop(Arys) evaluates
to true if obj has the property prop(Args) for
some bindings of the arguments (Args). To refer
to self, the form object itself, we can omit obj.
A special symbol otherwise represents the con-
dition when none of the other conditions with the
same event from the same state evaluates to true.

In our NewMedication example, at the start state,
the onEntry(start) event may trigger a state
transition. If the form object has the property
so that "needPhysicianApproval(Doc)" evalu-
ates to true with the argument Doc instantiated
to some physician, the state transition takes place
and the associated actions fire concomitantly.

3.3 Actions
Associated with each arc is a list of actions. Each

T < message(Args)

where T is an Agent object in the CIS, represent-
ing a worker or managing some resources. The
action denotes sending an asynchronous message
"message(Args)" to T. In our model, the action
usually involves sending a service request, a mes-
sage of the form "req(Service(Args))" to some
Agent object.

In the NewMedication example, when state
transition goes from start state to Wait-
for-physician-approval state, the message
"req(physicianApproval(self))" is sent to the
Doc identified on the form object as the doctor
needed to approve this.

The NewMedication form object is then in the
state Wait-for-Physician-Approval. The event
"done(req(physicianApproval(self,A n.))))"
may trigger another state transition, whenever the
doctor responds to the request to approve or disap-
prove the prescription. Depending on the result in
Ans, the form object moves on to other states until
it comes to an accept state to finish its life-cycle.
In its behavior part, the state diagram describes
the proper sequencing to execute the process.

4. DISCUSSION

We have described an object-based approach to
define a medical process as the life-cycle of in-
formation items afected by the process. An
event-driven paradigm captures such a life-cycle
in a finite state machine where completion of ser-
vice rendered by service providers will report the
"done" events to the corresponding form object.

We have adapted the visual environment from an
object modeling tool, ObjChart Builder [2] to de-
fine these objects and their state machine driven
behavior graphically. We define medical processes
in form objects using the tool. In the run-time en-
vironment, distributed fail-safe servers in the net-
worked CIS relay events to the form objects as the
medical processes proceed. During the execution,
the form objects communicate with other agent
objects, which reside on workstations serving the
health care providers.

510

action has the form

We believe that our object-based definition ap-
proach has several advantages. First, object-based
approach encapsulates procedural steps and the
relevant data as one integral unit. The encapsu-
lated locality facilitates modification of the defi-
nition, should the protocol need re-definition to
adapt to organizational or policy changes, or the
like. In contrast, a non-object-based approach of-
ten must decompose the process into a sequence
of smaller steps, separate from the data that each
of the steps operates on. The separation does not
preserve the locality of definition and changes be-
come harder to administer. Second, by chosing an
event-driven paradigm, our approach can express
naturally the various exceptional conditions which
very often occur in real-life situations. Each new
exceptional condition can be handled by adding a
new arc, for example, to the state machine. This
is in contrast to data-flow approaches where the
process definition describes how the data object
will flow from agent to agent; with such data-flow
approach, each exceptional condition makes the
flow more complicated although the normal flow
may be simple. Finally, our framework of con-
current objects, communicating via asynchronous
messages, is natural for capturing the inherent
concurrency present in the real world. For exam-
ple, a doctor goes on to serve the next patient af-
ter issuing a prescription while the pharmacy may
proceed on to fill the prescription, dispensing the
medicine to the patient.

An alternative approach to define medical
processes is to model them as interaction protocols
among a group of providers [7]. For example, we
can describe the process of prescribing new med-
ication in a sequence of message exchanges among
the providers, namely the originator, the co-signee
physician, and the dispensing pharmacist. It turns
out that the approach to encapsulate finite state
machine and data together can also be applied
to model inter-provider protocols as objects, with
the state machines to capture the protocol and
the sub-objects for the relevant data need to be
recorded across steps of the protocol.

Reference

[1] D. Gangopadhyay and S. Mitra. ObiChart:
Tangible Specification of Concurrent Object Be-
havior. Proceedings of ECOOP'93 - 7th Eu-
ropean Conference on Object-Oriented Program-
ming, published in Lecture Notes in Computer Sci-
ence 707, Springer-Verlag, July 1993, pp.432-457.

[21 D. Gangopadhyay, S. Mitra and S.S. Dhali-
wal. ObjChart Builder: An Environment for Ex-
ecuting Visual Object Models. To be presented
in TOOLS-USA'93, 11 th International Conference
on Technology of Object-Oriented Languages and
Systems, Santa Barbara, California, August 1993.

[3] M.S. Roberts, E.M. Dreese, N. Hurley, N. Zullo,
and M. Peterson. Blending Administrative and
Clinical Needs: The Development of a Referring
Physician Database and Automatic Referral Let-
ter. Proceedings of the 15th Annual Sympo-
sium on Computer Applications in Medical Care,
McGraw-Hlill, 1991, pp.559-563.

[4] S. Johnson, C Friedman, J.J. Cimino, T. Clark,
G. Hripcsak, and P.D. Clayton. Conceptual Data
Model for a Central Patient Database. Proceed-
ings of the 15th Annual Symposium on Computer
Applications in Medical Care, McGraw-Hill, 1991,
pp.381-385.

[5] A.J. Chandrasekhar, and R.N. Price. A Pro-
tocol System to Satisfy Research Specific, Disease
Specific, Physician Specific, and Patient Specific
Informational Needs. Proceedings of the 16th
Annual Symposium on Computer Applications in
Medical Care, McGraw-Hill, 1992, pp.724-728.

[6] S.W. Tu, M.G. Kahn, M.A. Musen, J.C. Fer-
guson, E.H. Shortliffe, and L.M. Fagan. Episodic
Skeletal-Plan Refinement Based on Temporal
Data. Communications of ACM, Vol.32, No.12,
December 1989, pp.l439-1455.

[7] A.L. Scherr. A New Approach to Business
Processes. IBM Systems Journal, Vol.32, No.1,
1993, pp.80-98.

511

